Renorming c0(Γ)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renorming James Tree Space

We show that James tree space JT can be renormed to be Lipschitz separated. It negatively answers the question of J. Borwein, J. Giles and J. Vanderwerff whether every Lipschitz separated Banach space is an Asplund space.

متن کامل

Renorming spaces with greedy bases

In approximation theory one is often faced with the following problem. We start with a signal, i.e., a vector x in some Banach space X. We then consider the (unique) expansion ∑∞ i=1 xiei of x with respect to some (Schauder) basis (ei) of X. For example, this may be a Fourier expansion of x, or it may be a wavelet expansion in Lp. We then wish to approximate x by considering m-term approximatio...

متن کامل

A note on convex renorming and fragmentability

Using the game approach to fragmentability, we give new and simpler proofs of the following known results: (a) If the Banach space admits an equivalent Kadec norm, then its weak topology is fragmented by a metric which is stronger than the norm topology. (b) If the Banach space admits an equivalent rotund norm, then its weak topology is fragmented by a metric. (c) If the Banach space is weakly ...

متن کامل

An Asymptotic Property of Schachermayer’s Space under Renorming

Let X be a Banach space with closed unit ball B. Given k ∈ N, X is said to be k-β, repectively, (k + 1)-nearly uniformly convex ((k + 1)-NUC), if for every ε > 0, there exists δ, 0 < δ < 1, so that for every x ∈ B, and every ε-separated sequence (xn) ⊆ B, there are indices (ni) k i=1, respectively, (ni) k+1 i=1 , such that 1 k+1 ‖x + ∑k i=1 xni‖ ≤ 1 − δ, respectively, 1 k+1 ‖ ∑k+1 i=1 xni‖ ≤ 1−...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1986

ISSN: 0022-247X

DOI: 10.1016/0022-247x(86)90013-2